Discovering Computers

Technology in a World of Computers, Mobile Devices, and the Internet

Chapter 10

Communications and Networks

Objectives Overview

Discuss the purpose of the components required for successful communications and identify various sending and receiving devices

Differentiate among LANs, MANs, WANs, and PANs

Differentiate between client/server and peer-topeer networks

Differentiate among a star network, bus network, and ring network Describe the various network communications standards and protocols

Explain the purpose of communications software

Objectives Overview

Describe various types of communications lines Describe commonly used communications devices Discuss different ways to set up and configure a home network

Differentiate among physical transmission media Differentiate among wireless transmission media

Communications

 Digital communications describes a process in which two or more computers or devices transfer data, instructions, and information

Communications

Page 417 Figure 10-1

- A network is a collection of computers and devices connected together via communications devices and transmission media
- Advantages of a network include:

Networks

Page 418 Figure 10-2

Discovering Computers 2014: Chapter 10

Networks

- A local area network (LAN) is a network that connects computers and devices in a limited geographical area
- A wireless LAN (WLAN) is a LAN that uses no physical wires

Networks

- A metropolitan area network (MAN) connects LANs in a metropolitan area
- A wide area network (WAN) is a network that covers a large geographic area
- A personal area network (PAN) is a network that connects computers and devices in an individual's workspace with wired and wireless technology

 The configuration of computers, devices, and media on a network is sometimes called the network architecture

Client/server network

Peer-to-peer network

 A network topology refers to the layout of the computers and devices in a communications network

Star network

Ring network

Ethernet is a network standard that specifies no central computer or device on the network (nodes) should control when data can be transmitted

The **token ring** standard specifies that computers and devices on the network share or pass a special signal (token)

TCP/IP is a network protocol that defines how messages (data) are routed from one end of a network to another

Example of How Communications Standards Work Together

- Wi-Fi identifies any network based on the 802.11 standard that specifies how two wireless devices communicate over the air with each other
- Bluetooth is a network protocol that defines how two Bluetooth devices use short-range radio waves to transmit data
- UWB (ultra-wideband) is a network standard that specifies how two UWB devices use short-range radio waves to communicate at high speeds with each other
- IrDA transmits data wirelessly via infrared (IR) light waves
- RFID is a protocol that defines how a network uses radio signals to communicate with a tag placed in or attached to an object, an animal, or a person

How Electronic RFID Toll Collection Works

Step 1 =

Motorist purchases an RFID transponder or RFID tag and attaches it to the vehicle's windshield.

Step 2

As the vehicle approaches the tollbooth, the RFID reader in the tollbooth sends a radio wave that activates the windshield-mounted RFID tag. The activated tag sends vehicle information to the RFID reader.

Step 3 💳

The RFID reader sends the vehicle information to the lane controller. The lane controller, which is part of a local area network, transmits the vehicle information to a central computer that subtracts the toll from the motorist's account. If the vehicle does not have an RFID tag, a high-speed camera takes a picture of the license plate and the computer prints a violation notice, which is mailed to the motorist.

NFC

- Protocol based on RFID
- Uses close-range radio signals
- Devices or objects should be placed within an inch or two of each other

WIMAX (802.16)

- Developed by IEEE
- Towers can cover a 30mile radius
- Two types are fixed wireless and mobile wireless

Communications Software

Communications software consists of programs and apps that:

Help users establish a connection to another computer, mobile device, or network Manage the transmission of data, instructions, and information

Provide an interface for users to communicate with one another

Communications Lines

Communications Lines

Table 10-2 Speeds of Various Dedicated Digital Lines

Type of Line	Transfer Rates	
Cable	256 Kbps to 52 Mbps	
DSL	256 Kbps to 8.45 Mbps	
ISDN	Up to 1.54 Mbps	
FTTP	5 Mbps to 300 Mbps	
Fractional T1	128 Kbps to 768 Kbps	
Τ1	1.544 Mbps	
Т3	44.736 Mbps	
ATM	155 Mbps to 622 Mbps, can reach 10 Gbps	

Communications Lines

 ADSL is a type of DSL that supports faster transfer rates when receiving data

 A communications device is any type of hardware capable of transmitting data, instructions, and information between a sending device and a receiving device

 A broadband modem sends and receives data and information to and from a digital line

 A wireless modem uses a mobile phone provider's network to connect to the Internet wirelessly from a computer or mobile device

 A wireless access point is a central communications device that allows computers and devices to transfer data wirelessly among themselves or to a wired network

 A router connects multiple computers or other routers together and transmits data to its correct destination on a network

- A network card enables a computer or device that does not have built-in networking capability to access a network
- Available in a variety of styles

 A hub or switch is a device that provides a central point for cables in a network

Home Networks

 Many home users connect multiple computers and devices together in a home network

Transmission Media

- Transmission media carries one or more communications signals
- Broadband media transmit multiple signals simultaneously
- The amount of data, instructions, and information that can travel over transmission media sometimes is called the bandwidth
- Latency is the time it takes a signal to travel from one location to another on a network

Physical Transmission Media

Table 10-3Transfer Rates for Physical TransmissionMedia Used in LANs				
Type of Cable and LAN	Maximum Transfer Rate			
Twisted-Pair Cable				
 10Base-T (Ethernet) 	10 Mbps			
 100Base-T (Fast Ethernet) 	100 Mbps			
 1000Base-T (Gigabit Ethernet) 	1 Gbps			
• Token ring	4 Mbps to 16 Mbps			
Coaxial Cable				
 10Base2 (ThinWire Ethernet) 	10 Mbps			
 10Base5 (ThickWire Ethernet) 	10 Mbps			
Fiber-Optic Cable				
 10Base-F (Ethernet) 	10 Mbps			
 100Base-FX (Fast Ethernet) 	100 Mbps			
 FDDI (Fiber Distributed Data Interface) token ring 	100 Mbps			
• Gigabit Ethernet	1 Gbps			
• 10-Gigabit Ethernet	10 Gbps			
• 40-Gigabit Ethernet	40 Gbps			
 100-Gigabit Ethernet 	100 Gbps			

Page 443 Table 10-3

Discovering Computers 2014: Chapter 10

Physical Transmission Media

Ethernet cable

coaxial cable plugs into wall outlet

Fiber-optic cable

Pages 443 - 444 Figures 10-23 – 10-25

Discovering Computers 2014: Chapter 10

Table 10-4 Wireless Transmission Media Transfer Rates			
Medium		Maximum Transfer Transmission Rate	
Infrared		115 Kbps to 4 Mbps	
Broadcast radio	 Bluetooth 	1 Mbps to 24 Mbps	
	• 802.11b	11 Mbps	
	• 802.11a	54 Mbps	
	• 802.11g	54 Mbps	
	• 802.11n	300 Mbps	
	• 802.11ac	500 Mbps to 1 Gbps	
	• 802.11ad	up to 7 Gbps	
	• UWB	110 Mbps to 480 Mbps	
Cellular radio	• 2G	9.6 Kbps to 144 Kbps	
	• 3G	144 Kbps to 3.84 Mbps	
	• 4G	Up to 100 Mbps	
Microwave radio		10 Gbps	
Communications satellite		2.56 Tbps	

- Broadcast radio is a wireless transmission medium that distributes radio signals through the air over long distances
- Cellular radio is a form of broadcast radio that is used widely for mobile communications

 Microwaves are radio waves that provide a highspeed signal transmission

Page 447 Figure 10-27

Discovering Computers 2014: Chapter 10

 A communications satellite is a space station that receives microwave signals from an earth-based station, amplifies it, and broadcasts the signal over a wide area

 A global positioning system (GPS) is a navigation system that consists of one or more earth-based receivers that accept and analyze signals sent by satellites in order to determine the receiver's geographical location

Other Examples of GPS Receivers

Summary

Various types of network architectures, topologies, and standards and protocols

Communications software

Communications lines and communications devices

How to create a home network

Physical transmission media and wireless transmission media

Discovering Computers

Technology in a World of Computers, Mobile Devices, and the Internet

Chapter 10

Communications and Networks

Chapter 10 Complete

